
A Web Database Development Course and a Unique Problem-Solving Project

Charles R. Moen, M.S.1 and Morris M. Liaw, Ph.D.2

Abstract

 Today, the content of most Web sites contains dynamically generated pages that
present information stored in a database, and computer science students are eager to learn
how to develop these database-driven Web sites. This paper presents how students at the
University of Houston - Clear Lake (UHCL) learn about Web database development in a
course that emphasizes project-building activities, and it looks at the implementation
details of a successful student project, the Online Address Book. Four unique problems
and the solutions that were implemented in this project are explained: 1) editing multiple
students’ data; 2) checking the data with a regular expression; 3) stale session variables;
and 4) potential security violations.

The Online Address Book

 At UHCL, students have the opportunity to learn how to develop database-driven Web
sites by taking CSCI 5633 Web Database Development. [1] In this course, the emphasis
is on developing practical skills, and its most important feature is a semester-long project
that produces a fully functional Web site that uses a backend database. This section looks
at how a successful student project, the Online Address Book was implemented.
 The Online Address Book project is a database-driven Web application that displays
the names, email addresses, and home page addresses of all of the students in the class.
Other requirements are: 1) the user must be able to display the names sorted either by the
student’s last name or by their user ID number; 2) each student in the Address Book must
be able to edit his or her own name and address information; 3) password authentication
is required before a user can edit the data; and 4) the data must be maintainable by a user
with an administrator role.

Fig. 1. Left, main page of the Online Address Book. Right, login dialog

 The user interface for the Address Book is shown in Fig. 1 on the left. This view is the
main page as seen by any user who navigates to the Web site for the course, and it is
created dynamically by server-side scripts on the server. The scripts receive the course ID
in the query string of the HTTP request. Then the course ID is used in a SQL query to

retrieve the records of all the students in that course, and these records are added to the
table displayed on the page. The default view shown in the figure displays the records in
the order of their user ID number. Alternatively, they can be displayed in the alphabetic
order of the students’ last names by clicking on the link labeled “Order By Name.”
 If any of the students in the class wish to make changes to their own data, they can
click on the link, “Change My Data,” which brings up the login dialog shown in Fig. 1 on
the right.
 After logging in successfully, the student can either change his or her own data, or
delete it from the database. The edit dialog that the student uses to make these changes is
shown in Fig. 2 on the right side, and the flow chart showing the sequence of these
actions is shown on the left side of the figure.

Fig. 2. Left, flow chart showing actions available to student users. Right, edit dialog.

Additional Features for the Teacher

 There are extra features for teachers, but to gain access to this additional functionality,
the user has to log in as an administrator. To do so, the user must click on “Change My
Data” and enter the appropriate user ID and password. The login script validates whether
the user is an administrator by examining a Boolean “Admin” field in that user’s database
record. Once the teacher is logged in, a “teacher” session variable is set to “true” so that
the pages visited after the initial login can recognize the user’s status.

Fig. 3. The page seen by a teacher who is logged in and ready to change the data

 After logging in successfully, the teacher will see the Web page shown in Fig. 3. This
view shows all the students in the class, and the teacher will be able to add, delete, and
edit the data for any student displayed here by selecting the records to change and then
clicking the appropriate button at the bottom of the page.

Solutions for Some Special Problems

 Two of the solutions developed for the Address Book are unique, and this section
examines them in detail.

set recordsToUpdate = server.createObject("scripting.dictionary")
count = 0

'Each checkbox's name is the number for the student's user ID
'Get the numbers of all the checkboxes that were checked
for each fld in request.form
 if isNumeric(fld) then
 count = count + 1
 recordsToUpdate(count) = fld
 end if
next

if request("btnChange") <> "" then
 set session.contents("changes") = recordsToUpdate
 session.contents("changeCount") = count

Fig. 4. Code within updateStudent.asp that collects the IDs of students to be edited

1. Editing Multiple Students
 One special problem was the need for the teacher to have a convenient way to edit
multiple students’ data. To solve this problem, checkboxes were added, shown in Fig. 3,
so that the teacher can select multiple students to change by clicking their checkboxes.
 This feature was implemented by using session variables and scripts to collect IDs of
the records marked for changes and send them one-by-one to the “edit dialog” page.
 The procedure starts when the teacher clicks the checkboxes of the students to be
changed and clicks on “Change A Student.” At that point, an HTTP post request
containing all of the selected checkbox elements is submitted to updateStudent.asp. The
name attribute of each of these checkboxes is the user ID of the student that it represents.
The code in the script updateStudent.asp collects these user IDs from the request and
adds them to a dictionary object, “recordsToUpdate,” along with a key which is the value
of a counter incremented for each student record. After the IDs of all the checked records
have been collected in this way, recordsToUpdate is then put in a session variable called
“changes,” and the final count is put in “changeCount.” This code is shown in Fig. 4.
 The updateStudent.asp script then sends the request to getMe.asp which puts the user
ID of the first student into the query string and decrements “changeCount.” Then the
request is forwarded to editStudent.asp where the user ID is used in a SQL query to
retrieve the first student’s data and display it in the edit dialog box.
 After making changes to the data in the dialog, the teacher must click on its “Save”
button. This button submits the data to the database and then sends a request to getMe.asp
again. There the ID of the next student is taken from “changes” and put into the query

string, and the request is sent back to editStudent.asp.
 This iterative process continues until changeCount is 0, and there are no more user ID
numbers left. Fig. 5 shows the steps in the process.

Fig. 5. Flow chart showing actions available to teachers

2. Checking the Data with a Regular Expression
 Another problem was caused by inconsistencies in how the users entered their data for
the address book. Each entry in the column that displays the URL for the home page of
that particular student is designed to be a link to the page. Unfortunately, not all of the
students would remember to enter “HTTP://” as part of their home page address, and then
the links failed to work.

<%
'Did the user put in http in his URL?
thisHome = objRecordset("Homepage")
set objRegExp = new RegExp
objRegExp.pattern = "http"
objRegExp.ignoreCase = true
if not objRegExp.test(thisHome) then
 thisHome = "HTTP://" & thisHome
end if %>
<td><a href="<%=thisHome%>"><%=thisHome%></td>

Fig. 6. Code within names.asp that checks the URLs for “HTTP://”

 This problem was solved by using a regular expression to examine the record of every
URL. The code then adds “HTTP://” only if it is missing. The code for this solution is
shown in Fig. 6.

Problems Easily Overlooked

 After the development was finished and the code had been successfully deployed,
some additional problems emerged. These problems developed from two issues that are
easily overlooked in the development of any Web application.

1. Stale Session Variables
 The first problem surfaced when users discovered that the links at the top of the page
to other class resources did not always work correctly.
 It was discovered that the links stopped working only after a user had navigated to the
Online Address Book and then left the page open for more than twenty minutes. The
conclusion was that the problem was caused when the session expired.
 This conclusion was correct, because these links funneled user navigation through a
routing script, goNext.asp. This script checked the “CourseID” session variable for the
name of the specific section of the current user’s class and used it to create the next page
request. Whenever the session expired and this session variable was abandoned, the
routing information was lost.
 The problem was easily solved by storing the course ID in a local variable that is
always added to the query string whenever the user navigates to another page.

2. Potential Security Violations
 The second problem was identified when students working in the lab would forget to
log out from the Address Book after changing their data. This oversight made the
student’s Address Book data vulnerable if he or she left their work station unattended. A
malicious user could surreptitiously sit at the unattended station, navigate back to the
Address Book, and alter the data.
 This problem was solved by changing the code so that the user is automatically logged
out as soon as a change is completed.

Conclusion

 The project-oriented approach to teaching Web database development has been very
successful at UHCL. The Online Address Book shows that its students are capable of
creating a web site that is both effective and innovative.

Reference

[1] The textbook used in this course is: J. Buyens, Web Database Development Step by

Step. Redmond: Microsoft Press, 2000.

1 Charles R. Moen, M.S., Adjunct instructor at the School of Science and Computer Engineering,

University of Houston - Clear Lake, Houston, TX, crmoen@juno.com
2 Morris M. Liaw, Ph.D., Associate Professor of Computer Science and Computer Information Systems at

the School of Science and Computer Engineering, University of Houston - Clear Lake, Houston, TX,
liaw@cl.uh.edu

